欢迎访问鄱阳湖地域文化特色库!
全部 图书 图片 报纸 期刊 新闻 视频 学位论文 会议论文
检索结果相关分组
按文献类别分组
期刊(16)
学位论文(6)
按栏目分组
文献与研究 (22)
按年份分组
2016(4)
2012(3)
2009(5)
2008(10)
按来源分组
遥感技术与应用(7)
中国科学院遥感应用研究所(6)
高技术通讯(3)
国土资源遥感(3)
红外与毫米波学报(2)
遥感技术与研究(1)
相关搜索词
基于神经网络算法的多极化雷达数据估算鄱阳湖生物量
作者: 董磊 廖静娟 沈国状  来源:遥感技术与应用 年份:2009 文献类型 :期刊 关键词: 生物量  多极化  雷达  MIMICS模型  神经网络 
描述:神经网络的特点是分布并行处理,适用于模拟复杂的非线性模型。在野外调查的基础上,利用多极化雷达数据,通过改进MIMICS模型模拟湿地植被参数(植被高度、含水量、生物量等)和雷达后向散射系数之间的关系,建立神经网络模型。通过模型的训练和仿真,与实测数据进行比较、验证,从而估算鄱阳湖湿地植被的生物量分布情况。研究表明基于改进的MIMICS模型训练数据的神经网络模型有较好的反演湿地植被生物量的能力,并据此反演了鄱阳湖湿地2007年4月、7月、11月的生物量动态变化情况。
全文:神经网络的特点是分布并行处理,适用于模拟复杂的非线性模型。在野外调查的基础上,利用多极化雷达数据,通过改进MIMICS模型模拟湿地植被参数(植被高度、含水量、生物量等)和雷达后向散射系数之间的关系,建立神经网络模型。通过模型的训练和仿真,与实测数据进行比较、验证,从而估算鄱阳湖湿地植被的生物量分布情况。研究表明基于改进的MIMICS模型训练数据的神经网络模型有较好的反演湿地植被生物量的能力,并据此反演了鄱阳湖湿地2007年4月、7月、11月的生物量动态变化情况。
基于神经网络算法的多极化雷达数据估算鄱阳湖生物量
作者: 董磊 廖静娟 沈国状  来源:遥感技术与应用 年份:2009 文献类型 :期刊 关键词: 生物量  多极化  雷达  MIMICS模型  神经网络 
描述:神经网络的特点是分布并行处理,适用于模拟复杂的非线性模型。在野外调查的基础上,利用多极化雷达数据,通过改进MIMICS模型模拟湿地植被参数(植被高度、含水量、生物量等)和雷达后向散射系数之间的关系,建立神经网络模型。通过模型的训练和仿真,与实测数据进行比较、验证,从而估算鄱阳湖湿地植被的生物量分布情况。研究表明基于改进的MIMICS模型训练数据的神经网络模型有较好的反演湿地植被生物量的能力,并据此反演了鄱阳湖湿地2007年4月、7月、11月的生物量动态变化情况。
全文:神经网络的特点是分布并行处理,适用于模拟复杂的非线性模型。在野外调查的基础上,利用多极化雷达数据,通过改进MIMICS模型模拟湿地植被参数(植被高度、含水量、生物量等)和雷达后向散射系数之间的关系,建立神经网络模型。通过模型的训练和仿真,与实测数据进行比较、验证,从而估算鄱阳湖湿地植被的生物量分布情况。研究表明基于改进的MIMICS模型训练数据的神经网络模型有较好的反演湿地植被生物量的能力,并据此反演了鄱阳湖湿地2007年4月、7月、11月的生物量动态变化情况。
基于ENVISAT ASAR数据的鄱阳湖湿地生物量反演研究
作者: 沈国状 廖静娟 郭华东 董磊  来源:高技术通讯 年份:2009 文献类型 :期刊 关键词: 密歇根微波冠层散射(MIMICS)  biomass  (ANN)  neural  wetland  (MIMICS)  Scattering  鄱阳湖  Lake  人工神经网络(ANN)  ENVISAT  MIcrowave  生物量反演  network  MIchigan  artificial  inversion  Canopy  Poyang  ASAR 
描述:湿生植被是鄱阳湖湿地生态系统的重要组成部分,生物量的大小是衡量湿地生态系统初级生产力的主要指标之一.本文利用ENVISAT ASAR交替极化(HH,VV)数据对鄱阳湖湿地地区的湿生植被进行生物量反演研究,并在密歇根微波冠层散射(MIMICS)模型模拟分析的基础上利用人工神经网络(ANN)方法来反演生物量.据此计算出鄱阳湖4月份湿生植被的总生物量干重约为1.065×109kg,并给出了生物量分布图.反演结果表明,ENVISAT ASAR数据可以很好地用于湿地植被生物量反演;神经网络生物量反演方法可以有效地表达生物量与后向散射系数之间复杂的非线性关系,从而大大提高反演精度;反演结果的误差主要来自于实地采样、图像配准、反演计算过程中带来的误差.
全文:湿生植被是鄱阳湖湿地生态系统的重要组成部分,生物量的大小是衡量湿地生态系统初级生产力的主要指标之一.本文利用ENVISAT ASAR交替极化(HH,VV)数据对鄱阳湖湿地地区的湿生植被进行生物量反演研究,并在密歇根微波冠层散射(MIMICS)模型模拟分析的基础上利用人工神经网络(ANN)方法来反演生物量.据此计算出鄱阳湖4月份湿生植被的总生物量干重约为1.065×109kg,并给出了生物量分布图.反演结果表明,ENVISAT ASAR数据可以很好地用于湿地植被生物量反演;神经网络生物量反演方法可以有效地表达生物量与后向散射系数之间复杂的非线性关系,从而大大提高反演精度;反演结果的误差主要来自于实地采样、图像配准、反演计算过程中带来的误差.
基于ENVISAT ASAR数据的鄱阳湖湿地生物量反演研究
作者: 沈国状 廖静娟 郭华东 董磊  来源:高技术通讯 年份:2009 文献类型 :期刊 关键词: 密歇根微波冠层散射(MIMICS)  biomass  (ANN)  neural  wetland  (MIMICS)  Scattering  鄱阳湖  Lake  人工神经网络(ANN)  ENVISAT  MIcrowave  生物量反演  network  MIchigan  artificial  inversion  Canopy  Poyang  ASAR 
描述:湿生植被是鄱阳湖湿地生态系统的重要组成部分,生物量的大小是衡量湿地生态系统初级生产力的主要指标之一.本文利用ENVISAT ASAR交替极化(HH,VV)数据对鄱阳湖湿地地区的湿生植被进行生物量反演研究,并在密歇根微波冠层散射(MIMICS)模型模拟分析的基础上利用人工神经网络(ANN)方法来反演生物量.据此计算出鄱阳湖4月份湿生植被的总生物量干重约为1.065×109kg,并给出了生物量分布图.反演结果表明,ENVISAT ASAR数据可以很好地用于湿地植被生物量反演;神经网络生物量反演方法可以有效地表达生物量与后向散射系数之间复杂的非线性关系,从而大大提高反演精度;反演结果的误差主要来自于实地采样、图像配准、反演计算过程中带来的误差.
全文:湿生植被是鄱阳湖湿地生态系统的重要组成部分,生物量的大小是衡量湿地生态系统初级生产力的主要指标之一.本文利用ENVISAT ASAR交替极化(HH,VV)数据对鄱阳湖湿地地区的湿生植被进行生物量反演研究,并在密歇根微波冠层散射(MIMICS)模型模拟分析的基础上利用人工神经网络(ANN)方法来反演生物量.据此计算出鄱阳湖4月份湿生植被的总生物量干重约为1.065×109kg,并给出了生物量分布图.反演结果表明,ENVISAT ASAR数据可以很好地用于湿地植被生物量反演;神经网络生物量反演方法可以有效地表达生物量与后向散射系数之间复杂的非线性关系,从而大大提高反演精度;反演结果的误差主要来自于实地采样、图像配准、反演计算过程中带来的误差.
基于ENVISAT ASAR数据的鄱阳湖湿地生物量反演研究
作者: 沈国状 廖静娟 郭华东 董磊  来源:高技术通讯 年份:2009 文献类型 :期刊 关键词: 密歇根微波冠层散射(MIMICS)  biomass  (ANN)  neural  wetland  (MIMICS)  Scattering  鄱阳湖  Lake  人工神经网络(ANN)  ENVISAT  MIcrowave  生物量反演  network  MIchigan  artificial  inversion  Canopy  Poyang  ASAR 
描述:湿生植被是鄱阳湖湿地生态系统的重要组成部分,生物量的大小是衡量湿地生态系统初级生产力的主要指标之一.本文利用ENVISAT ASAR交替极化(HH,VV)数据对鄱阳湖湿地地区的湿生植被进行生物量反演研究,并在密歇根微波冠层散射(MIMICS)模型模拟分析的基础上利用人工神经网络(ANN)方法来反演生物量.据此计算出鄱阳湖4月份湿生植被的总生物量干重约为1.065×109kg,并给出了生物量分布图.反演结果表明,ENVISAT ASAR数据可以很好地用于湿地植被生物量反演;神经网络生物量反演方法可以有效地表达生物量与后向散射系数之间复杂的非线性关系,从而大大提高反演精度;反演结果的误差主要来自于实地采样、图像配准、反演计算过程中带来的误差.
全文:湿生植被是鄱阳湖湿地生态系统的重要组成部分,生物量的大小是衡量湿地生态系统初级生产力的主要指标之一.本文利用ENVISAT ASAR交替极化(HH,VV)数据对鄱阳湖湿地地区的湿生植被进行生物量反演研究,并在密歇根微波冠层散射(MIMICS)模型模拟分析的基础上利用人工神经网络(ANN)方法来反演生物量.据此计算出鄱阳湖4月份湿生植被的总生物量干重约为1.065×109kg,并给出了生物量分布图.反演结果表明,ENVISAT ASAR数据可以很好地用于湿地植被生物量反演;神经网络生物量反演方法可以有效地表达生物量与后向散射系数之间复杂的非线性关系,从而大大提高反演精度;反演结果的误差主要来自于实地采样、图像配准、反演计算过程中带来的误差.
Rss订阅