欢迎访问鄱阳湖地域文化特色库!
全部 图书 图片 报纸 期刊 新闻 视频 学位论文 会议论文
检索结果相关分组
相关搜索词
鄱阳湖水体悬浮物反硝化潜力模拟研究
作者: 姚晓龙 徐会显 唐陈杰 张路  来源:中国环境科学 年份:2015 文献类型 :期刊 关键词: 潜力  鄱阳湖  悬浮物  反硝化 
描述:以鄱阳湖为对象,采用乙炔抑制法,分别模拟了厌氧和好氧状态下的悬浮物反硝化潜力和过程,结果表明,厌氧和好氧状态下水体悬浮物均能够产生明显的反硝化作用.受乙炔抑制,其反硝化产物N2O的浓度累积随时间呈"慢-快-慢"的节律,浓度累积曲线符合逻辑斯谛模型(P<0.01).拟合结果显示:悬浮物浓度为30g/L时,厌氧培养条件下快增期反硝化速率达到(81.76±10.37)μmol N/(L·d),好氧环境下为(14.12±2.31)μmol N/(L·d).CO2浓度累积曲线同样符合逻辑斯谛模型,但好氧条件下CO2浓度累积极值较高,约为厌氧条件下的5倍,表明好氧条件下好氧呼吸占更大的比例.水体悬浮物反硝化潜力与悬浮物浓度有关,相同悬浮物浓度下,好氧培养水体悬浮物反硝化潜力较厌氧培养弱,且达到累积极值的时间更长,水体溶解氧一定程度上抑制了悬浮物反硝化作用.依据好氧培养的试验结果,估算得到鄱阳湖悬浮物全年反硝化导致的氮素净损失为1010t,约占鄱阳湖氮素年输入量的0.74%和鄱阳湖沉积物反硝化氮去除量的14%,鄱阳湖水体悬浮物反硝化在氮素净去除中起到一定作用.
全文:以鄱阳湖为对象,采用乙炔抑制法,分别模拟了厌氧和好氧状态下的悬浮物反硝化潜力和过程,结果表明,厌氧和好氧状态下水体悬浮物均能够产生明显的反硝化作用.受乙炔抑制,其反硝化产物N2O的浓度累积随时间呈"慢-快-慢"的节律,浓度累积曲线符合逻辑斯谛模型(P<0.01).拟合结果显示:悬浮物浓度为30g/L时,厌氧培养条件下快增期反硝化速率达到(81.76±10.37)μmol N/(L·d),好氧环境下为(14.12±2.31)μmol N/(L·d).CO2浓度累积曲线同样符合逻辑斯谛模型,但好氧条件下CO2浓度累积极值较高,约为厌氧条件下的5倍,表明好氧条件下好氧呼吸占更大的比例.水体悬浮物反硝化潜力与悬浮物浓度有关,相同悬浮物浓度下,好氧培养水体悬浮物反硝化潜力较厌氧培养弱,且达到累积极值的时间更长,水体溶解氧一定程度上抑制了悬浮物反硝化作用.依据好氧培养的试验结果,估算得到鄱阳湖悬浮物全年反硝化导致的氮素净损失为1010t,约占鄱阳湖氮素年输入量的0.74%和鄱阳湖沉积物反硝化氮去除量的14%,鄱阳湖水体悬浮物反硝化在氮素净去除中起到一定作用.
鄱阳湖水体悬浮有机质碳氮同位素分布特征及来源探讨
作者: 王毛兰 张丁苓 赖建平 胡珂图 赖劲虎  来源:中国环境科学 年份:2014 文献类型 :期刊 关键词: 氮同位素  悬浮有机质  鄱阳湖  物质来源  碳同位素 
描述:通过对鄱阳湖及其入湖河流(赣江、抚河、信江、修水及饶河)水体悬浮有机质碳、氮同位素含量的测定,分析了鄱阳湖及其入湖河流水体悬浮有机质碳同位素(δ13CPOM)和氮同位素(δ15NPOM)时空分布特征,探讨了其水体悬浮有机质和氮素来源.结果表明,鄱阳湖区枯水期δ13CPOM、δ15NPOM值分布范围分别为-26.59‰~-24.91‰(n=9)和5.88‰~17.49‰(n=9),丰水期分别为-27.10‰~-25.88‰(n=9)和2.99‰~19.69‰(n=9);入湖河流水体枯水期δ13CPOM、δ15NPOM值变化范围分别为-27.79‰~-25.22‰(n=6)和2.87‰~9.26‰(n=6),丰水期分别为-28.07‰~-26.02‰(n=6)和2.12‰~8.75‰(n=6).有机质来源分析表明:C3植物是鄱阳湖区及其入湖河流水体悬浮有机质的主要来源;而氮素来源比较复杂,在不同季节和不同的地点也不尽相同,生活污水、化肥及其土壤流失氮是鄱阳湖区水体悬浮颗粒物氮素的3种主要来源;化肥、陆源有机质及其土壤流失氮是其入湖河流水体悬浮颗粒物氮素的3种主要来源.
全文:通过对鄱阳湖及其入湖河流(赣江、抚河、信江、修水及饶河)水体悬浮有机质碳、氮同位素含量的测定,分析了鄱阳湖及其入湖河流水体悬浮有机质碳同位素(δ13CPOM)和氮同位素(δ15NPOM)时空分布特征,探讨了其水体悬浮有机质和氮素来源.结果表明,鄱阳湖区枯水期δ13CPOM、δ15NPOM值分布范围分别为-26.59‰~-24.91‰(n=9)和5.88‰~17.49‰(n=9),丰水期分别为-27.10‰~-25.88‰(n=9)和2.99‰~19.69‰(n=9);入湖河流水体枯水期δ13CPOM、δ15NPOM值变化范围分别为-27.79‰~-25.22‰(n=6)和2.87‰~9.26‰(n=6),丰水期分别为-28.07‰~-26.02‰(n=6)和2.12‰~8.75‰(n=6).有机质来源分析表明:C3植物是鄱阳湖区及其入湖河流水体悬浮有机质的主要来源;而氮素来源比较复杂,在不同季节和不同的地点也不尽相同,生活污水、化肥及其土壤流失氮是鄱阳湖区水体悬浮颗粒物氮素的3种主要来源;化肥、陆源有机质及其土壤流失氮是其入湖河流水体悬浮颗粒物氮素的3种主要来源.
水文地貌分区下鄱阳湖丰水期水质空间差异及影响机制
作者: 张琍 陈晓玲 张媛 陈莉琼 张鹏  来源:中国环境科学 年份:2014 文献类型 :期刊
描述:在2011年7月鄱阳湖丰水期水质参数采样分析的基础上,结合Delft3D水动力模型结果,针对鄱阳湖湖区建立了8个水文地貌分区,分析了丰水期总悬浮泥沙(TSS),总磷(TP)、总氮(TN)与叶绿素a(Chla)浓度的空间分布特征,研究了各分区下的水质因子之间的关系.结果表明,鄱阳湖丰水期平均TSS浓度为33.65mg/L,远高于2003年以前10mg/L的平均浓度水平;平均氮、磷营养盐浓度分别为1.61mg/L及0.075mg/L,已达到并远远高于富营养化发生条件,而平均Chla浓度为5.99μg/L,并未达到富营养化湖泊水体临界值.Chla与其他各水质因子无显著相关性,而高泥沙浓度区域的TP与TSS呈现显著相关性.在不同鄱阳湖水文地貌分区下,高强度湖泊采砂活动的北部高流速水域TSS浓度高于河口三角洲水域3倍;TN,TP营养盐浓度表现为流域面源污染负荷大的赣江,饶河河口三角洲水域≥高强度湖泊采砂活动的北部高流速水域>流域污染负荷较小的修水河口三角洲水域及中部湖心水域.Chla则受营养盐浓度水平与水动力因素共同作用而表现为河流交换速度慢且高营养盐浓度水域>水流交换速度快且高营养盐浓度水域>水流交换速度慢且低营养盐浓度水域,其中饶河信江潼津河河口三角洲水域Chla浓度最高,平均水平达到12.53μg/L,超过了富营养化水体的临界值.
全文:在2011年7月鄱阳湖丰水期水质参数采样分析的基础上,结合Delft3D水动力模型结果,针对鄱阳湖湖区建立了8个水文地貌分区,分析了丰水期总悬浮泥沙(TSS),总磷(TP)、总氮(TN)与叶绿素a(Chla)浓度的空间分布特征,研究了各分区下的水质因子之间的关系.结果表明,鄱阳湖丰水期平均TSS浓度为33.65mg/L,远高于2003年以前10mg/L的平均浓度水平;平均氮、磷营养盐浓度分别为1.61mg/L及0.075mg/L,已达到并远远高于富营养化发生条件,而平均Chla浓度为5.99μg/L,并未达到富营养化湖泊水体临界值.Chla与其他各水质因子无显著相关性,而高泥沙浓度区域的TP与TSS呈现显著相关性.在不同鄱阳湖水文地貌分区下,高强度湖泊采砂活动的北部高流速水域TSS浓度高于河口三角洲水域3倍;TN,TP营养盐浓度表现为流域面源污染负荷大的赣江,饶河河口三角洲水域≥高强度湖泊采砂活动的北部高流速水域>流域污染负荷较小的修水河口三角洲水域及中部湖心水域.Chla则受营养盐浓度水平与水动力因素共同作用而表现为河流交换速度慢且高营养盐浓度水域>水流交换速度快且高营养盐浓度水域>水流交换速度慢且低营养盐浓度水域,其中饶河信江潼津河河口三角洲水域Chla浓度最高,平均水平达到12.53μg/L,超过了富营养化水体的临界值.
Rss订阅