欢迎访问鄱阳湖地域文化特色库!
全部 图书 图片 报纸 期刊 新闻 视频 学位论文 会议论文
检索结果相关分组
相关搜索词
三峡工程对鄱阳湖水质的影响
作者: 朱信华 董增川 赵杰 陈淑  来源:人民黄河 年份:2009 文献类型 :期刊 关键词: 鄱阳湖  COD  水质  三峡工程 
描述:介绍了鄱阳湖水质现状,并通过鄱阳湖湖口水位、湖区水位、入湖五河来水及长江干流来水等,定量分析了在三峡工程初期运行的2004~2007年对鄱阳湖水质的影响。结果表明,在三峡水库蓄水期,鄱阳湖湖口
全文:介绍了鄱阳湖水质现状,并通过鄱阳湖湖口水位、湖区水位、入湖五河来水及长江干流来水等,定量分析了在三峡工程初期运行的2004~2007年对鄱阳湖水质的影响。结果表明,在三峡水库蓄水期,鄱阳湖湖口
鄱阳湖湖区水体营养盐分布格局研究
作者: 吴颖靖 文仕知  来源:现代企业文化 年份:2009 文献类型 :期刊 关键词: 营养盐  分布格局  鄱阳湖 
描述:文章通过分析测定鄱阳湖水体水化学参数及其氮、磷含量,对其水化学特征及其氮磷时空分布特征做了系统研究。结果表明,鄱阳湖水体营养盐含量按照枯水期-平水期-丰水期时间顺序呈下降趋势,鄱阳湖TN、TP的含量
全文:文章通过分析测定鄱阳湖水体水化学参数及其氮、磷含量,对其水化学特征及其氮磷时空分布特征做了系统研究。结果表明,鄱阳湖水体营养盐含量按照枯水期-平水期-丰水期时间顺序呈下降趋势,鄱阳湖TN、TP的含量
基于时间序列MODIS影像的鄱阳湖丰水期悬浮泥沙浓度反演及变化
作者: 邬国锋 崔丽娟 纪伟涛  来源:湖泊科学 年份:2009 文献类型 :期刊 关键词: 鄱阳湖  变化分析  悬浮泥沙浓度  反演  MODIS 
描述:悬浮泥沙浓度是描述水质的重要参数之一,获得其在空间和时间上的分布信息对于理解、管理和保护湖泊生态系统是必要的.此研究旨在建立基于中分辨率成像光谱仪(MODIS)影像的鄱阳湖悬浮泥沙浓度反演模型,并
全文:悬浮泥沙浓度是描述水质的重要参数之一,获得其在空间和时间上的分布信息对于理解、管理和保护湖泊生态系统是必要的.此研究旨在建立基于中分辨率成像光谱仪(MODIS)影像的鄱阳湖悬浮泥沙浓度反演模型,并
鄱阳湖湖区水体营养盐分布格局及富营养化动态分析
作者: 吴颖靖  来源:中南林业科技大学 年份:2009 文献类型 :学位论文 关键词: 富营养化  鄱阳湖  营养盐分布 
描述:河流(赣江、抚河、修水、饶河和信江)以及鄱阳湖组成。本论文以鄱阳湖及其五大支流为研究对象,通过分析测定水体水化学参数及其氮、磷含量,对其水化学特征及其氮磷时空分布特征进行了系统研究,对鄱阳湖水体富营养化状态
全文:河流(赣江、抚河、修水、饶河和信江)以及鄱阳湖组成。本论文以鄱阳湖及其五大支流为研究对象,通过分析测定水体水化学参数及其氮、磷含量,对其水化学特征及其氮磷时空分布特征进行了系统研究,对鄱阳湖水体富营养化状态
鄱阳湖湖区水体营养盐分布格局及富营养化动态分析
作者: 吴颖靖  来源:中南林业科技大学 年份:2009 文献类型 :学位论文 关键词: 富营养化  鄱阳湖  营养盐分布 
描述:河流(赣江、抚河、修水、饶河和信江)以及鄱阳湖组成。本论文以鄱阳湖及其五大支流为研究对象,通过分析测定水体水化学参数及其氮、磷含量,对其水化学特征及其氮磷时空分布特征进行了系统研究,对鄱阳湖水体富营养化状态
全文:河流(赣江、抚河、修水、饶河和信江)以及鄱阳湖组成。本论文以鄱阳湖及其五大支流为研究对象,通过分析测定水体水化学参数及其氮、磷含量,对其水化学特征及其氮磷时空分布特征进行了系统研究,对鄱阳湖水体富营养化状态
鄱阳湖湖区水体营养盐分布格局及富营养化动态分析
作者: 吴颖靖  来源:中南林业科技大学 年份:2009 文献类型 :学位论文 关键词: 富营养化  鄱阳湖  营养盐分布 
描述:河流(赣江、抚河、修水、饶河和信江)以及鄱阳湖组成。本论文以鄱阳湖及其五大支流为研究对象,通过分析测定水体水化学参数及其氮、磷含量,对其水化学特征及其氮磷时空分布特征进行了系统研究,对鄱阳湖水体富营养化状态
全文:河流(赣江、抚河、修水、饶河和信江)以及鄱阳湖组成。本论文以鄱阳湖及其五大支流为研究对象,通过分析测定水体水化学参数及其氮、磷含量,对其水化学特征及其氮磷时空分布特征进行了系统研究,对鄱阳湖水体富营养化状态
基于半经验生物光学模型的鄱阳湖水质定量反演
作者: 周希畅  来源:武汉大学 年份:2009 文献类型 :学位论文 关键词: 底部反射  鄱阳湖  水体固有光学特性 
描述:鄱阳湖对于鸟类的保护有着重要的生态价值。但是,采砂已经很大程度的伤害了当地的水文条件。因此,监测水的混浊度的工作是很重要的。本文旨在用遥感的方法和对于浅水湖适用的半经验生物光学模型来建立鄱阳湖详细水体固有光学特性库和量化水的含沙量。 GSM模型在本文中被应用,通过实地测量的水面遥感反射率来获取水体固有光学特性,然后运用实地采集并在实验室测量的悬浮泥沙和叶绿素a含量来计算详细水体固有光学特性。考虑到本模型使用了非线性回归的方法,模型输出物的不确定性也被获取了。然后,底部反射被加入到模型之中来研究底部反射的影响。在对MERIS影像进行预处理之后,模型的反演算法被应用到影像之中以获得鄱阳湖悬浮泥沙含量的图。 在获取的水体固有光学特性和测量的悬浮泥沙含量之间建立了一个很强的关系(R2=0.85)。对叶绿素a来说,这个关系(R2=0.68)不如悬浮泥沙。这个计算出来的详细水体固有光学特性然后就被另外一半的采样点进行了评价。获取的水体固有光学特性同其一起,可以给出悬浮泥沙和叶绿素a含量的结果。加入底部反射由于对水体物质含量的较弱关系,并没有改善模型的结果。在对悬浮泥沙的评价中,两个模型,没有加入和加入了底部反射的,哪一个拥有较小的误差是不明显的。GSM模型和线性回归得到的详细水体固有光学特性被应用到影像中来获取悬浮泥沙含量图。用这种方法得到的含量图是不可用的,因为在湖区只有少量的像素点仍然保存下来。BEAM中的神经网络方法被用来获取含量图。这幅含量图也暗示了在采砂经常发生的区域,悬浮泥沙含量略高一些。 有很多个因素都有可能导致不合适的加入底部反射的方法,包括底部光谱的获取和底部深度的测量等。基本的原因是在模型中加入的波段的限制性。因此也需要更深入的研究。此外,也需要时间序列的影像来研究水的混浊度的变化。
全文:鄱阳湖对于鸟类的保护有着重要的生态价值。但是,采砂已经很大程度的伤害了当地的水文条件。因此,监测水的混浊度的工作是很重要的。本文旨在用遥感的方法和对于浅水湖适用的半经验生物光学模型来建立鄱阳湖详细水体固有光学特性库和量化水的含沙量。 GSM模型在本文中被应用,通过实地测量的水面遥感反射率来获取水体固有光学特性,然后运用实地采集并在实验室测量的悬浮泥沙和叶绿素a含量来计算详细水体固有光学特性。考虑到本模型使用了非线性回归的方法,模型输出物的不确定性也被获取了。然后,底部反射被加入到模型之中来研究底部反射的影响。在对MERIS影像进行预处理之后,模型的反演算法被应用到影像之中以获得鄱阳湖悬浮泥沙含量的图。 在获取的水体固有光学特性和测量的悬浮泥沙含量之间建立了一个很强的关系(R2=0.85)。对叶绿素a来说,这个关系(R2=0.68)不如悬浮泥沙。这个计算出来的详细水体固有光学特性然后就被另外一半的采样点进行了评价。获取的水体固有光学特性同其一起,可以给出悬浮泥沙和叶绿素a含量的结果。加入底部反射由于对水体物质含量的较弱关系,并没有改善模型的结果。在对悬浮泥沙的评价中,两个模型,没有加入和加入了底部反射的,哪一个拥有较小的误差是不明显的。GSM模型和线性回归得到的详细水体固有光学特性被应用到影像中来获取悬浮泥沙含量图。用这种方法得到的含量图是不可用的,因为在湖区只有少量的像素点仍然保存下来。BEAM中的神经网络方法被用来获取含量图。这幅含量图也暗示了在采砂经常发生的区域,悬浮泥沙含量略高一些。 有很多个因素都有可能导致不合适的加入底部反射的方法,包括底部光谱的获取和底部深度的测量等。基本的原因是在模型中加入的波段的限制性。因此也需要更深入的研究。此外,也需要时间序列的影像来研究水的混浊度的变化。
基于半经验生物光学模型的鄱阳湖水质定量反演
作者: 周希畅  来源:武汉大学 年份:2009 文献类型 :学位论文 关键词: 底部反射  鄱阳湖  水体固有光学特性 
描述:鄱阳湖对于鸟类的保护有着重要的生态价值。但是,采砂已经很大程度的伤害了当地的水文条件。因此,监测水的混浊度的工作是很重要的。本文旨在用遥感的方法和对于浅水湖适用的半经验生物光学模型来建立鄱阳湖详细水体固有光学特性库和量化水的含沙量。 GSM模型在本文中被应用,通过实地测量的水面遥感反射率来获取水体固有光学特性,然后运用实地采集并在实验室测量的悬浮泥沙和叶绿素a含量来计算详细水体固有光学特性。考虑到本模型使用了非线性回归的方法,模型输出物的不确定性也被获取了。然后,底部反射被加入到模型之中来研究底部反射的影响。在对MERIS影像进行预处理之后,模型的反演算法被应用到影像之中以获得鄱阳湖悬浮泥沙含量的图。 在获取的水体固有光学特性和测量的悬浮泥沙含量之间建立了一个很强的关系(R2=0.85)。对叶绿素a来说,这个关系(R2=0.68)不如悬浮泥沙。这个计算出来的详细水体固有光学特性然后就被另外一半的采样点进行了评价。获取的水体固有光学特性同其一起,可以给出悬浮泥沙和叶绿素a含量的结果。加入底部反射由于对水体物质含量的较弱关系,并没有改善模型的结果。在对悬浮泥沙的评价中,两个模型,没有加入和加入了底部反射的,哪一个拥有较小的误差是不明显的。GSM模型和线性回归得到的详细水体固有光学特性被应用到影像中来获取悬浮泥沙含量图。用这种方法得到的含量图是不可用的,因为在湖区只有少量的像素点仍然保存下来。BEAM中的神经网络方法被用来获取含量图。这幅含量图也暗示了在采砂经常发生的区域,悬浮泥沙含量略高一些。 有很多个因素都有可能导致不合适的加入底部反射的方法,包括底部光谱的获取和底部深度的测量等。基本的原因是在模型中加入的波段的限制性。因此也需要更深入的研究。此外,也需要时间序列的影像来研究水的混浊度的变化。
全文:鄱阳湖对于鸟类的保护有着重要的生态价值。但是,采砂已经很大程度的伤害了当地的水文条件。因此,监测水的混浊度的工作是很重要的。本文旨在用遥感的方法和对于浅水湖适用的半经验生物光学模型来建立鄱阳湖详细水体固有光学特性库和量化水的含沙量。 GSM模型在本文中被应用,通过实地测量的水面遥感反射率来获取水体固有光学特性,然后运用实地采集并在实验室测量的悬浮泥沙和叶绿素a含量来计算详细水体固有光学特性。考虑到本模型使用了非线性回归的方法,模型输出物的不确定性也被获取了。然后,底部反射被加入到模型之中来研究底部反射的影响。在对MERIS影像进行预处理之后,模型的反演算法被应用到影像之中以获得鄱阳湖悬浮泥沙含量的图。 在获取的水体固有光学特性和测量的悬浮泥沙含量之间建立了一个很强的关系(R2=0.85)。对叶绿素a来说,这个关系(R2=0.68)不如悬浮泥沙。这个计算出来的详细水体固有光学特性然后就被另外一半的采样点进行了评价。获取的水体固有光学特性同其一起,可以给出悬浮泥沙和叶绿素a含量的结果。加入底部反射由于对水体物质含量的较弱关系,并没有改善模型的结果。在对悬浮泥沙的评价中,两个模型,没有加入和加入了底部反射的,哪一个拥有较小的误差是不明显的。GSM模型和线性回归得到的详细水体固有光学特性被应用到影像中来获取悬浮泥沙含量图。用这种方法得到的含量图是不可用的,因为在湖区只有少量的像素点仍然保存下来。BEAM中的神经网络方法被用来获取含量图。这幅含量图也暗示了在采砂经常发生的区域,悬浮泥沙含量略高一些。 有很多个因素都有可能导致不合适的加入底部反射的方法,包括底部光谱的获取和底部深度的测量等。基本的原因是在模型中加入的波段的限制性。因此也需要更深入的研究。此外,也需要时间序列的影像来研究水的混浊度的变化。
基于半经验生物光学模型的鄱阳湖水质定量反演
作者: 周希畅  来源:武汉大学 年份:2009 文献类型 :学位论文 关键词: 底部反射  鄱阳湖  水体固有光学特性 
描述:鄱阳湖对于鸟类的保护有着重要的生态价值。但是,采砂已经很大程度的伤害了当地的水文条件。因此,监测水的混浊度的工作是很重要的。本文旨在用遥感的方法和对于浅水湖适用的半经验生物光学模型来建立鄱阳湖详细水体固有光学特性库和量化水的含沙量。 GSM模型在本文中被应用,通过实地测量的水面遥感反射率来获取水体固有光学特性,然后运用实地采集并在实验室测量的悬浮泥沙和叶绿素a含量来计算详细水体固有光学特性。考虑到本模型使用了非线性回归的方法,模型输出物的不确定性也被获取了。然后,底部反射被加入到模型之中来研究底部反射的影响。在对MERIS影像进行预处理之后,模型的反演算法被应用到影像之中以获得鄱阳湖悬浮泥沙含量的图。 在获取的水体固有光学特性和测量的悬浮泥沙含量之间建立了一个很强的关系(R2=0.85)。对叶绿素a来说,这个关系(R2=0.68)不如悬浮泥沙。这个计算出来的详细水体固有光学特性然后就被另外一半的采样点进行了评价。获取的水体固有光学特性同其一起,可以给出悬浮泥沙和叶绿素a含量的结果。加入底部反射由于对水体物质含量的较弱关系,并没有改善模型的结果。在对悬浮泥沙的评价中,两个模型,没有加入和加入了底部反射的,哪一个拥有较小的误差是不明显的。GSM模型和线性回归得到的详细水体固有光学特性被应用到影像中来获取悬浮泥沙含量图。用这种方法得到的含量图是不可用的,因为在湖区只有少量的像素点仍然保存下来。BEAM中的神经网络方法被用来获取含量图。这幅含量图也暗示了在采砂经常发生的区域,悬浮泥沙含量略高一些。 有很多个因素都有可能导致不合适的加入底部反射的方法,包括底部光谱的获取和底部深度的测量等。基本的原因是在模型中加入的波段的限制性。因此也需要更深入的研究。此外,也需要时间序列的影像来研究水的混浊度的变化。
全文:鄱阳湖对于鸟类的保护有着重要的生态价值。但是,采砂已经很大程度的伤害了当地的水文条件。因此,监测水的混浊度的工作是很重要的。本文旨在用遥感的方法和对于浅水湖适用的半经验生物光学模型来建立鄱阳湖详细水体固有光学特性库和量化水的含沙量。 GSM模型在本文中被应用,通过实地测量的水面遥感反射率来获取水体固有光学特性,然后运用实地采集并在实验室测量的悬浮泥沙和叶绿素a含量来计算详细水体固有光学特性。考虑到本模型使用了非线性回归的方法,模型输出物的不确定性也被获取了。然后,底部反射被加入到模型之中来研究底部反射的影响。在对MERIS影像进行预处理之后,模型的反演算法被应用到影像之中以获得鄱阳湖悬浮泥沙含量的图。 在获取的水体固有光学特性和测量的悬浮泥沙含量之间建立了一个很强的关系(R2=0.85)。对叶绿素a来说,这个关系(R2=0.68)不如悬浮泥沙。这个计算出来的详细水体固有光学特性然后就被另外一半的采样点进行了评价。获取的水体固有光学特性同其一起,可以给出悬浮泥沙和叶绿素a含量的结果。加入底部反射由于对水体物质含量的较弱关系,并没有改善模型的结果。在对悬浮泥沙的评价中,两个模型,没有加入和加入了底部反射的,哪一个拥有较小的误差是不明显的。GSM模型和线性回归得到的详细水体固有光学特性被应用到影像中来获取悬浮泥沙含量图。用这种方法得到的含量图是不可用的,因为在湖区只有少量的像素点仍然保存下来。BEAM中的神经网络方法被用来获取含量图。这幅含量图也暗示了在采砂经常发生的区域,悬浮泥沙含量略高一些。 有很多个因素都有可能导致不合适的加入底部反射的方法,包括底部光谱的获取和底部深度的测量等。基本的原因是在模型中加入的波段的限制性。因此也需要更深入的研究。此外,也需要时间序列的影像来研究水的混浊度的变化。
基于半经验生物光学模型的鄱阳湖水质定量反演
作者: 周希畅  来源:武汉大学 年份:2009 文献类型 :学位论文 关键词: 底部反射  鄱阳湖  水体固有光学特性 
描述:鄱阳湖对于鸟类的保护有着重要的生态价值。但是,采砂已经很大程度的伤害了当地的水文条件。因此,监测水的混浊度的工作是很重要的。本文旨在用遥感的方法和对于浅水湖适用的半经验生物光学模型来建立鄱阳湖详细水体固有光学特性库和量化水的含沙量。 GSM模型在本文中被应用,通过实地测量的水面遥感反射率来获取水体固有光学特性,然后运用实地采集并在实验室测量的悬浮泥沙和叶绿素a含量来计算详细水体固有光学特性。考虑到本模型使用了非线性回归的方法,模型输出物的不确定性也被获取了。然后,底部反射被加入到模型之中来研究底部反射的影响。在对MERIS影像进行预处理之后,模型的反演算法被应用到影像之中以获得鄱阳湖悬浮泥沙含量的图。 在获取的水体固有光学特性和测量的悬浮泥沙含量之间建立了一个很强的关系(R2=0.85)。对叶绿素a来说,这个关系(R2=0.68)不如悬浮泥沙。这个计算出来的详细水体固有光学特性然后就被另外一半的采样点进行了评价。获取的水体固有光学特性同其一起,可以给出悬浮泥沙和叶绿素a含量的结果。加入底部反射由于对水体物质含量的较弱关系,并没有改善模型的结果。在对悬浮泥沙的评价中,两个模型,没有加入和加入了底部反射的,哪一个拥有较小的误差是不明显的。GSM模型和线性回归得到的详细水体固有光学特性被应用到影像中来获取悬浮泥沙含量图。用这种方法得到的含量图是不可用的,因为在湖区只有少量的像素点仍然保存下来。BEAM中的神经网络方法被用来获取含量图。这幅含量图也暗示了在采砂经常发生的区域,悬浮泥沙含量略高一些。 有很多个因素都有可能导致不合适的加入底部反射的方法,包括底部光谱的获取和底部深度的测量等。基本的原因是在模型中加入的波段的限制性。因此也需要更深入的研究。此外,也需要时间序列的影像来研究水的混浊度的变化。
全文:鄱阳湖对于鸟类的保护有着重要的生态价值。但是,采砂已经很大程度的伤害了当地的水文条件。因此,监测水的混浊度的工作是很重要的。本文旨在用遥感的方法和对于浅水湖适用的半经验生物光学模型来建立鄱阳湖详细水体固有光学特性库和量化水的含沙量。 GSM模型在本文中被应用,通过实地测量的水面遥感反射率来获取水体固有光学特性,然后运用实地采集并在实验室测量的悬浮泥沙和叶绿素a含量来计算详细水体固有光学特性。考虑到本模型使用了非线性回归的方法,模型输出物的不确定性也被获取了。然后,底部反射被加入到模型之中来研究底部反射的影响。在对MERIS影像进行预处理之后,模型的反演算法被应用到影像之中以获得鄱阳湖悬浮泥沙含量的图。 在获取的水体固有光学特性和测量的悬浮泥沙含量之间建立了一个很强的关系(R2=0.85)。对叶绿素a来说,这个关系(R2=0.68)不如悬浮泥沙。这个计算出来的详细水体固有光学特性然后就被另外一半的采样点进行了评价。获取的水体固有光学特性同其一起,可以给出悬浮泥沙和叶绿素a含量的结果。加入底部反射由于对水体物质含量的较弱关系,并没有改善模型的结果。在对悬浮泥沙的评价中,两个模型,没有加入和加入了底部反射的,哪一个拥有较小的误差是不明显的。GSM模型和线性回归得到的详细水体固有光学特性被应用到影像中来获取悬浮泥沙含量图。用这种方法得到的含量图是不可用的,因为在湖区只有少量的像素点仍然保存下来。BEAM中的神经网络方法被用来获取含量图。这幅含量图也暗示了在采砂经常发生的区域,悬浮泥沙含量略高一些。 有很多个因素都有可能导致不合适的加入底部反射的方法,包括底部光谱的获取和底部深度的测量等。基本的原因是在模型中加入的波段的限制性。因此也需要更深入的研究。此外,也需要时间序列的影像来研究水的混浊度的变化。
上页 1 2 ... 4 5 6 下页
Rss订阅